50 research outputs found

    Random Neural Networks and Optimisation

    Get PDF
    In this thesis we introduce new models and learning algorithms for the Random Neural Network (RNN), and we develop RNN-based and other approaches for the solution of emergency management optimisation problems. With respect to RNN developments, two novel supervised learning algorithms are proposed. The first, is a gradient descent algorithm for an RNN extension model that we have introduced, the RNN with synchronised interactions (RNNSI), which was inspired from the synchronised firing activity observed in brain neural circuits. The second algorithm is based on modelling the signal-flow equations in RNN as a nonnegative least squares (NNLS) problem. NNLS is solved using a limited-memory quasi-Newton algorithm specifically designed for the RNN case. Regarding the investigation of emergency management optimisation problems, we examine combinatorial assignment problems that require fast, distributed and close to optimal solution, under information uncertainty. We consider three different problems with the above characteristics associated with the assignment of emergency units to incidents with injured civilians (AEUI), the assignment of assets to tasks under execution uncertainty (ATAU), and the deployment of a robotic network to establish communication with trapped civilians (DRNCTC). AEUI is solved by training an RNN tool with instances of the optimisation problem and then using the trained RNN for decision making; training is achieved using the developed learning algorithms. For the solution of ATAU problem, we introduce two different approaches. The first is based on mapping parameters of the optimisation problem to RNN parameters, and the second on solving a sequence of minimum cost flow problems on appropriately constructed networks with estimated arc costs. For the exact solution of DRNCTC problem, we develop a mixed-integer linear programming formulation, which is based on network flows. Finally, we design and implement distributed heuristic algorithms for the deployment of robots when the civilian locations are known or uncertain

    On the stability properties of power networks with time-varying inertia

    Full text link
    A major transition in modern power systems is the replacement of conventional generation units with renewable sources of energy. The latter results in lower rotational inertia which compromises the stability of the power system, as testified by the growing number of frequency incidents. To resolve this problem, numerous studies have proposed the use of virtual inertia to improve the stability properties of the power grid. In this study, we consider how inertia variations, resulting from the application of control action associated with virtual inertia and fluctuations in renewable generation, may affect the stability properties of the power network within the primary frequency control timeframe. We consider the interaction between the frequency dynamics and a broad class of power supply dynamics in the presence of time-varying inertia and provide locally verifiable conditions, that enable scalable designs, such that stability is guaranteed. To complement the presented stability analysis and highlight the dangers arising from varying inertia, we provide analytic conditions that enable to deduce instability from single-bus inertia fluctuations. Our analytical results are validated with simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system, where we demonstrate how inertia variations may induce large frequency oscillations and show that the application of the proposed conditions yields a stable response.Comment: 14 pages, 8 figure

    Exploring green interference power for wireless information and energy transfer in the MISO downlink

    Get PDF
    In this paper we propose a power-efficient transfer of information and energy, where we exploit the constructive part of wireless interference as a source of green useful signal power. Rather than suppressing interference as in conventional schemes, we take advantage of constructive interference among users, inherent in the downlink, as a source of both useful information and wireless energy. Specifically, we propose a new precoding design that minimizes the transmit power while guaranteeing the quality of service (QoS) and energy harvesting constraints for generic phase shift keying modulated signals. The QoS constraints are modified to accommodate constructive interference. We derive a sub-optimal solution and a local optimum solution to the precoding optimization problem. The proposed precoding reduces the transmit power compared to conventional schemes, by adapting the constraints to accommodate constructive interference as a source of useful signal power. Our simulation results show significant power savings with the proposed data-aided precoding compared to the conventional precoding

    Optimal intervention strategies to mitigate the COVID-19 pandemic effects

    Get PDF
    Governments across the world are currently facing the task of selecting suitable intervention strategies to cope with the effects of the COVID-19 pandemic. This is a highly challenging task, since harsh measures may result in economic collapse while a relaxed strategy might lead to a high death toll. Motivated by this, we consider the problem of forming intervention strategies to mitigate the impact of the COVID-19 pandemic that optimize the trade-off between the number of deceases and the socio-economic costs. We demonstrate that the healthcare capacity and the testing rate highly affect the optimal intervention strategies. Moreover, we propose an approach that enables practical strategies, with a small number of policies and policy changes, that are close to optimal. In particular, we provide tools to decide which policies should be implemented and when should a government change to a different policy. Finally, we consider how the presented results are affected by uncertainty in the initial reproduction number and infection fatality rate and demonstrate that parametric uncertainty has a more substantial effect when stricter strategies are adopted

    Emergency response systems for disaster management in buildings

    Get PDF
    Emergency response operations can benefit from the use of information systems that reduce decision making time and facilitate co-ordination between the participating units. We propose the use of two such systems and evaluate them with a specialised software platform that we have developed for simulation of disasters in buildings. The first system provides movement decision support to evacuees by directing them through the shortest or less hazardous routes to the exit. It is composed of a network of decision nodes and sensor nodes, positioned at specific locations inside the building. The recommendations of the decision nodes are computed in a distributed manner and communicated to the evacuees or rescue personnel in their vicinity. The second system uses wireless-equipped robots that move inside a disaster area and establish a network for two-way communication between trapped civilians and rescuers. They are autonomous and their goal is to maximise the number of civilians connected to the network. We evaluate both proposed information systems in various emergency scenarios, using the specialised simulation software that we developed

    A Hierarchical Robust Control Strategy for Decentralized Signal-Free Intersection Management

    Get PDF
    corecore